- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0004000000000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Shitz, Shlomo Shamai (4)
-
Poor, H. Vincent (2)
-
Gorce, Jean-Marie (1)
-
Liang, Yingbin (1)
-
Nikbakht, Homa (1)
-
Ozgur, Ayfer (1)
-
Peleg, Michael (1)
-
Tajer, Ali (1)
-
Wigger, Michele (1)
-
Wu, Xiugang (1)
-
Yang, Wei (1)
-
Zohdy, Maha (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zohdy, Maha; Tajer, Ali; Shitz, Shlomo Shamai (, IEEE International Symposium on Information Theory)null (Ed.)
-
Wu, Xiugang; Ozgur, Ayfer; Peleg, Michael; Shitz, Shlomo Shamai (, 2020 IEEE International Symposium on Information Theory (ISIT))
-
Yang, Wei; Liang, Yingbin; Shitz, Shlomo Shamai; Poor, H. Vincent (, 2017 IEEE International Symposium on Information Theory (ISIT))This paper studies a two-user state-dependent Gaus- sian multiple-access channel with state noncausally known at one encoder. Two new outer bounds on the capacity region are derived, which improve uniformly over the best known (genie- aided) outer bound. The two corner points of the capacity region as well as the sum rate capacity are established, and it is shown that a single-letter solution is adequate to achieve both the corner points and the sum rate capacity. Furthermore, the full capacity region is characterized in situations in which the sum rate capacity is equal to the capacity of the helper problem. The proof exploits the optimal-transportation idea of Polyanskiy and Wu (which was used previously to establish an outer bound on the capacity region of the interference channel) and the worst- case Gaussian noise result for the case in which the input and the noise are dependent.more » « less
An official website of the United States government
